A Note on the Index of Cone Differential Operators

نویسندگان

  • JUAN B. GIL
  • PAUL A. LOYA
  • GERARDO A. MENDOZA
چکیده

We prove that the index formula for b-elliptic cone differential operators given by Lesch in [6] holds verbatim for operators whose coefficients are not necessarily independent of the normal variable near the boundary. We also show that, for index purposes, the operators can always be considered on weighted Sobolev spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

A Note on a Non-linear Krein-rutman Theorem

In this note we will present an extension of the Krein-Rutman theorem for an abstract non-linear, compact, positively 1-homogeneous operators on a Banach space having the properties of being increasing with respect to a convex cone K and such that there is a non-zero u ∈ K for which M Tu < u for some positive constant M . This will provide a uniform framework for recovering the Krein-Rutman-lik...

متن کامل

Geometry and Spectra of Closed Extensions of Elliptic Cone Operators

We study the geometry of the set of closed extensions of index 0 of an elliptic differential cone operator and its model operator in connection with the spectra of the extensions, and give a necessary and sufficient condition for the existence of rays of minimal growth for such operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001